(12x+12-x^2+1)=(8x-8)

Simple and best practice solution for (12x+12-x^2+1)=(8x-8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (12x+12-x^2+1)=(8x-8) equation:



(12x+12-x^2+1)=(8x-8)
We move all terms to the left:
(12x+12-x^2+1)-((8x-8))=0
We get rid of parentheses
-x^2+12x-((8x-8))+12+1=0
We calculate terms in parentheses: -((8x-8)), so:
(8x-8)
We get rid of parentheses
8x-8
Back to the equation:
-(8x-8)
We add all the numbers together, and all the variables
-1x^2+12x-(8x-8)+13=0
We get rid of parentheses
-1x^2+12x-8x+8+13=0
We add all the numbers together, and all the variables
-1x^2+4x+21=0
a = -1; b = 4; c = +21;
Δ = b2-4ac
Δ = 42-4·(-1)·21
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-10}{2*-1}=\frac{-14}{-2} =+7 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+10}{2*-1}=\frac{6}{-2} =-3 $

See similar equations:

| 6x-19=-75 | | -5.5=-n/2+n/3 | | 10x-2=18x-1 | | -5.5=n/2+n/3 | | 3x-2=-56 | | 12f=108 | | 4=2+(2/5)t | | (x+2)^2=36 | | 6/x+5=8 | | 10x^2+9x-2=-4 | | 12x+12-x^2+1=8x-8 | | 4^x-2=262144 | | 5(2x+4)=8x-4-2x | | x+3(3x-11)=30 | | 5r^2-14r-6=-3 | | x/2-5=65 | | 13x=183 | | 3x+12+5x=90 | | x^2+0.25x+0.015625=-5+.015625 | | 4^(1-8x)=5^x | | -19=4x+1 | | 68=w+(w-10) | | Y-7x2-14x=3 | | 11y^2-19y-10=4y^2 | | 4^1-8x=5^x | | 50-17.50=5x | | 1+4x+7=2(2x+4) | | (2y+4)+7y=49 | | 9x-7+3x+1=90 | | 37=3(n-1)+2n | | (3x+4)(x+6)=0 | | 2/(x-1)-(1/4)=3/(x+1) |

Equations solver categories